Jump to content

Basic Electronics Book for Beginners


Recommended Posts

As a beginner, you may need some basic electronics books (diodes,transistors,current..etc). If you are just starting out with electronics and want to have something to read, then I have some recommendations for you.

The Art of Electronics:Paul Horowitz and Winfield Hill

Often described as the Bible of Electronics. Its fair to say that if you buy this one, you wont need another for a while!


voltage and current; passive components; signals; complex analysis made simple.

an easy-to-use transistor model
extensive discussion of useful subcircuits, such as followers, switches, current sources, current mirrors, differential amplifiers, push-pull, cascode.
Field Effect Transistors
JFETs and MOSFETs: types and properties; low-level and power applications; FET vs bipolar transistors; ESD.
how to design amplifiers, buffers, current sources, gain controls, and logic switches.
everything you wanted to know about analog switching -- feedthrough and crosstalk, bandwidth and speed, charge injection, nonlinearities, capacitance and on-resistance, latchup.
Feedback and Operational Amplifiers
"golden rules" for simple design, followed by in-depth treatment of real op-amp properties.
circuit smorgasbord; design tradeoffs and cautions.
easy to understand discussion of single-supply op-amp design and op-amp frequency compensation.
special topics such as active rectifiers, logarithmic converters, peak detectors, dielectric absorption.
Active Filters and Oscillators

PS: The pictures of Oscillators that I have uploaded in the attashment came from this site. You can visit the site and download the datasheet of Oscillators to know more details about it. 

simplified design of active filters, with tables and graphs.
design of constant-Q and constant-BW filters, switched-capacitor filters, zero-offset LPFs, single-control tunable notch.
oscillators: relaxation, VCO, RF VCO, quadrature, switched-capacitor, function generator, lookup table, state-variable, Wein bridge, LC, parasitic, quartz crystal, ovenized.
Voltage Regulators and Power Circuits
discrete and integrated regulators, current sources and current sensing, crowbars, ground meccas.
power design: parallel operation of bipolar and MOSFET transistors, SOA, thermal design and heatsinking.
voltage references: bandgap/zener: stability and noise; integrated/discrete.
all about switching supplies: configurations, design, and examples.
flying-capacitor, high-voltage, low-power, and ultra stable power supplies.
full analysis of a commercial line-powered switcher.
Precision Cicruits and Low-Noise Techniques
an easy-to-use section on precision linear design.
a section on noise, shielding, and grounding.
a unique graphical method for streamlined low-noise amplifier analysis.
autonulling amplifiers, instrumentation amplifiers, isolation amplifiers.
Digital Electronics
combinational and sequential design with standard ICs, and with PLDs.
all you wanted to know about timing, logic races, runt pulses, clocking skew, and metastable states.
monostable multivibrators and their idiosyncrasies.
a collection of digital logic pathology, and what to do about it.
Digital Meets Analog
an extensive discussion of interfacing between logic families, and between logic and the outside world.
a detailed discussion of A/D and D/A conversion techniques.
digital noise generation.
an easy-to-understand discussion of phase-locked loops, with design examples and applications.
optoelectronics: emitters, detectors, couplers, displays, fiber optics.
driving buses, capacitive loads, cables, and the outside world.
IBM PC and Intel family: assembly language, bus signals, interfacing (with many examples).
programmed I/O, interrupts, status registers, DMA.
RS-232 cables that really work.
serial ports, ASCII, and modems.
SCSI, IPI, GPIB, parallel ports.
local-area networks.
68000 family: actual design examples and discussion -- how to design them into instruments, and how to make them do what you want.
complete general-purpose instrument design, with programming.
peripheral LSI chips; serial and parallel ports; D/A and A/D converters.
memory: how to choose it, how to use it.
Electronic Construction Techniques
prototyping methods.
printed-circuit and wire-wrap design, both manual and CAD.
instrument construction: motherboards, enclosures, controls, wiring, accessibility, cooling.
electrical and construction hints.
High-Frequency and High-Speed Techniques
transistor high-frequency design made simple.
modular RF components -- amplifiers, mixers, hybrids, etc.
modulation and detection.
simplified design of high-speed switching circuits.
Low-Power Design
extensive discussion of batteries, solar cells, and "signal-current" power sources.
micropower references and regulators.
low-power analog circuits -- discrete and integrated.
low-power digital circuits, microprocessors, and conversion techniques.
Measurements and Signal Processing
what you can measure and how accurately, and what to do with the data.
bandwidth-narrowing methods made clear: signal averaging, multichannel scaling, lock-in amplifiers, and pulse-height analysis.

The Art of Electronics is the ultimate reference/explanation. Pretty much anything that you really need to know when designing circuits is in there. But it's not very good at learning book, more as a reference. But if you need to think about all the aspects of a design, they've got you covered. It's a must-have.
Paul Scherz's Pratical Electronics for Inventors. I inherited this book from my late cousin. Very concise, almost too concise, but has a ridiculous amount of data/information that is useful for designing practical circuits. However, it's not very good at explaining concepts in an easy-to-understand fashion. That said, this book was easy to use in a pinch at RS to learn enough about transistors to select some for a project in 10 mins after asking for help from the clueless salesperson, and its data tables can be useful. Great as a reference, but might be overwhelming to learn/teach yourself from.
The Getting Started With Electronics book from RS, I've found, is probably the worst reference I own. It has cute pictures, but is extremely terse in its explanations. After taking a class on electronics, and re-looking at the book, I find it only useful as a way to jog my memory in remembering formulas, basic circuits and such. He also bucks tradition: all current flow is labeled non-conventionally, which is really confusing when using his reference with others. That confused the heck out me when learning about transistors. That said, it's easy to find and cheap.




Link to comment
Share on other sites

  • 4 years later...

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Create New...